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Model for an enzymatic reaction-diffusion system realizing storage of graded information
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An enzymatic reaction-diffusion system in a neuron is supposed for the modeling of synaptic storage
of information. This system can encode and store the history of signal transmissions in a graded and cu-
mulative fashion. This graduality appears to result from signal-induced changes in quantities that are

held constant with time in the absence of signals.
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I. INTRODUCTION

It is now generally believed that a use-dependent
change in the transmission strength of a synapse (a plas-
tic change in the synaptic weight) is an elementary pro-
cess of information storage in the brain [1]. In 1985, Lis-
man proposed an enzymatic reaction scheme for theoreti-
cal modeling of molecular mechanisms of synaptic plas-
ticity [2]. He postulated two enzymes in a postsynaptic
spine: One enzyme undergoes an autocatalytic activation
and the active form of this enzyme is responsible for
synaptic enhancement; meanwhile, the other enzyme
deactivates the former enzyme. In this paper, we will call
the former and the latter enzymes an enhancer and an
inactivator, respectively. This reaction system can work
as a binary switch: A signal transferred through a
synapse is encoded to a binary number by the ‘“‘thresh-
old” appearing in the enzymatic reactions, and then the
synaptic weight is (not) enhanced if the signal intensity is
above (below) this threshold. Since Lisman’s scheme is a
hypothetical but fairly plausible one [3], we can employ it
as a basis for further discussion on molecular mecha-
nisms of synaptic plasticity.

Consider a group of synapses formed on the same neu-
ron and neighboring with each other. In the original Lis-
man model, the enzymatic reactions in each spine are as-
sumed to proceed independently of those in the other
spines. This assumption, however, can no longer be held
if some of the enzymes are soluble in cytosol. Diffusional
transportations of the soluble enzymes in cytosol between
spines inevitably cause some kind of interaction between
the signal-transduction processes at neighboring
synapses. Such an interaction must modify the simple
information-storage hypothesis in the original Lisman
model.

Let the inactive enhancer, the active enhancer, and the
inactivator be symbolized by E, E*, and I, respectively.
Each of them may be soluble or associated to membrane
[4]. The cases to be theoretically examined are listed as
follows: (i) E is soluble whereas E* and I are membrane
associated; (ii) E and I are soluble whereas E* is mem-
brane associated; (iii) I is soluble whereas E and E* are
membrane associated [5].

Recently, the present authors investigated the case (i)
and found a pattern-encoding and storage hypothesis
based on a phenomenon dubbed synapse selection: The
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weight of only one of neighboring synapses, which is the
strongest at an initial time, is selected and enhanced, and
the weights of the other synapses are returned to their
basal levels in ascending order of their initial strength [6].

There still remained the cases (ii) and (iii) to be exam-
ined. The present authors have investigated these
remaining cases to complete the series of examinations
and, in the case (ii), found an interesting pattern-encoding
and storage hypothesis based on a phenomenon quite
different from synapse selection.

II. CONSTRUCTION OF A MODEL

The case we will examine in this paper is that E and
are soluble whereas E* is membrane associated. A
schematic drawing of our model is presented in Fig. 1. In
each postsynaptic spine, E, E*, and I obey the following
reaction scheme [2]:

kl k2

E*+Ek<—_’E‘E—>E'+E*, 2.1
-1
ks ky

I+E*k::_’IE*—>I+E, (2.2)
-3

where k;, k_,, k,, k3, k_3, and k, are rate constants,
and E*E and IE* symbolize intermediary metabolites. It
is natural to assume that E*E and IE* are membrane as-
sociated because E*, a part of these complexes, is bound
by membrane.
Signal transmissions at synapses trigger conversion of
E to E* in each spine, which is additionally described by
fi(0
E—E*, (2.3)

where f;(t) is the time-dependent rate constant whose
amplitude defines the signal intensity at the ith synapse at
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FIG. 1. A schematic drawing of our model.
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The time evolution of the enzyme concentrations in the
ith spine is then described by the following equations [6]:

d[E*); .
dr =fi()E),—k,[E],[E*);
+(k_, +2k,)[E*E],
—ki[E*];[I];+k_5[IE*]; , (2.4)
d[E]; .
di =—fi(O[E],—k,[E,[E*],
N
+k_ [E*E)+KIE* )+ 3 T, 2.5)
i=1
d(E*E), . .
—dt——~=k1[E],~[E li—(k_+k,))[E*E]; , (2.6)
d[I]; N
ar =_ks[E']i[I]i+(k-3+k4)[IE*]i+EJIU’
i=1
2.7)
d[IE*);
T=k3[E']i[I]i_(k-3+k4)[IE']i . (2.8)

In the above equations, J; and J; represent diffusional
i )

transportations of E and I in cytosol from the jth spine to
the ith one, respectively; their exact forms are given by

JEiJ-:_kE([E]i—[E]j) ; (2.9)
I, = k(1= 1], (2.10)

where k; and k; are the mass transfer coefficients for E
and I, respectively, and i,j=1, ..., N, with N being the
number of neighboring synapses interacting with each
other through cytosolic transportations of E and I.
From (2.4)—-(2.8), one finds that
N
S(E];+[E*),+2[E*E];+[IE*];)=NCg ,

i=1

(2.1D

g([l]i_f_[IE*]i):NCI »

i=1

(2.12)

where Cp and C; are constants. Equations (2.11) and
(2.12) represent conservations of the total concentrations
of all forms of the enhancer and the inactivator, respec-
tively.

Following the preceding studies [2,6], we will postulate
steady-state assumptions for intermediary metabolites [7]
as follows:

d[E*E), _d[IE*),
dat  dt

On the basis of these assumptions, one can simplify
(2.4)-(2.8), (2.11), and (2.12) as follows:

=0 (i=1,...,N). (2.13)

dx; XY Nx;
— =¢€;(s)x; + - , (2.14)
ds B N
2xty
j=1
dy, xyi | Nx, N
z;—=——e,~(s)x,r— B'+ ~ + ‘Eyj—Ny,- 5,
Sx;+y U
ji=1
(2.15)

N
2 (xi +y1)=Na ’

i=1

(2.16)

where x;, y;, s, a, B, v, 8, and €;(s) are dimensionless
variables and parameters defined as follows:
x,~=(k2/V1)[E’],~; y,=(k2/V1)[E],; S=k2t;
a=(k,/V;)Cg; B=(k,/V)K ; y=(ky/V)Kp;
65=kg/k,y; €(s)=f;(t)/k,, with K, =(k_,+k,)/k;,
KI=(k_3+k4)/k3, V1=k4C1, and C
—(1/N)ZN(2[E*E ], +[IE*);).

Cy=Cpg

III. ANALYTICAL
AND NUMERICAL
INVESTIGATION OF THE MODEL

Our problem is now described by the nonlinear dynam-
ical system (2.14)—(2.16). Therefore the dynamical
behavior of the model can be elucidated by analyzing the
mathematical structure of trajectories given by this
dynamical system.

We will first examine the model in the absence of sig-
nals, and next consider the effects caused by signal
transmissions. In the absence of signals, say f;(z)=0 for
i=1,...,N, the dynamical system has equilibrium
points whose coordinates are the solutions of

dx; dx; .
—=——=0 (i=1,...,N) with (2.16) . (3.1)
ds ds

Let P®® be an equilibrium point. It can be easily
proved that (i) when p <0, P*? is P'*) or Py; (ii) when
p>0 and v>1, P ijs P\ P{7) or Py; and (ii) when
p>0andv<l, P®¥=Pp, Here u and v are the order pa-
rameters defined by

u=NB—ay , (3.2)
oy — 3V NB(NB—ov)
= N[2NB—ay—2 4 NB(NB—ay)] : (3.3)
Y

Pt P'7) and P, are the points whose coordinates are
given by

NB .
= (+) - _
xX;=v; y;—S(+)+y (i=1,...,N), (3.4)
- NB .
— (=) = -
x;=v; "/, yi_S(_)-l-y (i=1,...,N), (3.5)
and
x;=0, y;=a (i=1,...,N), (3.6)

respectively, where v *”s and v/ ”s are arbitrary posi-

tive numbers satisfying

N N
SoF=st, TpiTI=5) 3.7

i=1 i=1

where S'*) and $'™) are the larger and the smaller roots
of the quadratic equation,

S2—(Na—y)S+N(NB—ay)=0 . (3.8)

Notice that the values of v;*”s and v/~ ”s cannot be

uniquely determined only from (3.1). To determine them
uniquely, we need additional criteria.
Now we will examine the stabilities of the equilibrium

—)s
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points to know the asymptotic behavior of the dynamical
system. Set x;=x/*Y+y; and y,=y*¥+14, assuming
that x; and ¢; represent small fluctuations around an
equilibrium point (x*¥,y®?), and then linearize Egs.
(2.14) and (2.15) with respect to X; and ¥;. From these
linearized equations, we can derive the characteristic
equation which determines the stability of each equilibri-
um point. When P®¥=P(*) the characteristic equation
is

N1 1 N?
}" - 2 (+)
I§ N B (™ +y)
N piH)
X [I |[A+—5—+N&|{=0; (3.9
i=1,i%k B
when P(¢¥=p(~)
N1 1 N? -
WIS — A+ |=— vy~
L%N B (s"+y? |
N v’_(*)
X [I |A+—5—+N8||=0; (3.10
i=1,i#k B
and when P°¥=p,
A x+"—v—[7yﬁ"ﬁ -y 3.11)

The equations (3.9)-(3.11) yield A=0 as an N-multiple
root. One finds that, when £ <0, or >0 and v> 1, the
real parts of all the other roots of (3.9) are negative.
Therefore, P'*) has marginal stability. When u>0,
(3.10) has at least one positive root, and accordingly P’
is unstable. P, is unstable when u <0 and stable when
1 >0. These results are summarized in Table 1.

From the above observations one can expect that (i)
when 1 <0, P—P'*) as s — oo; (ii) when >0 and v> 1,
P—P'*) or P—Py; and (iii) when u>0and v<1, P—0.
We verified this expectation by numerically calculating
the time evolutions of the dynamical system for various
sets of the parameter values and the initial conditions.
Typical results are shown in Fig. 2.

A surprising result we found in the above investigation
is that, in the cases (i) and (ii), the final state of the
dynamical system can depend on its initial state in a
graded fashion. Figure 3(a) demonstrates this for the
simplest case N =2. Initial ends of trajectories in the
figure are assigned the same values of a, 3, ¥, and §. In
spite of that, their final ends are different.

This strange phenomenon can be resolved as follows.
The existence of the N-multiple root A=0 suggests that
the dynamical system may have N hidden conservative

TABLE 1. Equilibrium points of the dynamical system
(2.14)-(2.16) and their stabilities. S and U represent stable and
unstable, respectively.

Case Equilibrium points Stability
u<o0 (i) P, U
P( +) S
u>0 v>1 (ii) P, S
P U
P( +) S
v<l1 (iii) P, S
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FIG. 2. The time evolutions of x;’s for N =5. The parameter
values are chosen in each figure as follows: In (a), (a, B, 7, 8) =
(2.0, 1.0, 3.0, 1.0), satisfying u <0; in (b) and (¢), (a, B, 7, 8) =
(2.0, 1.0, 1.0, 1.0), satisfying £ >0 and v>1; in (d), (a, B, ¥, 8)
= (2.0, 1.5, 1.0, 1.0), satisfying u >0 and v< 1.

quantities, besides usual conservative quantities appear-
ing in chemical-reaction systems such as the total concen-
trations of all forms of substances [see (2.11) and (2.12),
or their reduced form (2.16)]. In fact, one can find the
following N quantities that are held constant with time:

N
Q;=x;+y;+B8 3 (Inx;—Inx;) (i=1,...,N). (.12
j=1
Using (2.16), one has
N
>0 =Na. (3.13)
i=1
2 2 .
@ | (b)
V. |
Xy 1 / ‘/ Xy 1
’j‘/ri_\ /@/\§ |
T
[¢] = 0 J
0 1 2 0 1 2

X4 X1

FIG. 3. The orthogonal projections of trajectories for N =2
onto the x,x, plane. (a) The orthogonal projections of trajec-
tories starting from points giving different sets of Q;’s. The pa-
rameter values are chosen as (a, B, v, §) = (2.0, 2.5, 3.0, 1.0)
which satisfies u <0. Notice that the final ends of the trajec-
tories are all aligned along x, +x,=S‘"’ (dashed line), as obvi-
ously expected from (3.7). (b) The orthogonal projections of tra-
jectories starting from different points but giving the same Q;’s.
The same parameter values as in (a) are employed. The coordi-
nates of the initial ends of the trajectories are chosen according
to the formula y,=Q; —xi—Bﬁzﬁ':l(lnxi—lnx,-) to ensure that
they all satisfy (Q,, @,) = (3.0, 1.0).



50 BRIEF REPORTS 1707

3
2
X1
X ~
1
X2
Q0 90 180
3.0 S
€1 ‘ H 1.0 1.0 1.0
0 x! gl | -
€9 L 15 2.0
o n JL

FIG. 4. The time evolutions of x;’s in the presence of synap-
tic stimulations. The same parameter values as in Fig. 3(a) are
employed. The time courses of the amplitudes of €(s) and €,(s)
supposed in the calculation are illustrated at the bottom of the
figure.

Given a set of Q;’s that satisfy (3.13) together with (3.1),
the coordinates of P'*) and P'~) are uniquely deter-
mined. In other words, different sets of Q;’s can give the
different coordinates of P'*) and P'~). The values of
Q,’s are determined by the initial values of x;’s and y;’s
through (3.12). Therefore, as the initial end of the trajec-
tory is altered, its final end (P'1)) is translocated in pro-
portion to this alteration [Fig. 3(a)].

It is therefore expected that trajectories starting from
different points but giving the same Q;’s end at the same
point. We numerically verified this expectation [Fig.
3()].

Next we will discuss the effect of signal transmissions
on the time evolution of the system. The appearance of
nonzero f;(¢)’s still holds (2.16) but breaks the conserva-
tions of Q;’s. Suppose a series of intermittent signal
transmissions and consider, for example, the case 4 <0 in
which the state point always converges to P'*). P(*) s
translocated by the first signal transmission and then the
state point begins to migrate towards this translocated
P'*). The next signal transmission further translocates
P'*) towards which the state point migrates again.
Succeeding signal transmissions drive further transloca-
tions of P'* and following migrations of the state point.
For N =2, the time evolution of x;’s in the presence of
signal transmissions was numerically demonstrated in
Fig. 4.

We can measure the weight of the ith synapse by the
amplitude of x; because, as formerly mentioned, x; is a
dimensionless variable proportional to [E*];, and E* is
responsible for synaptic enhancement. Figure 4 shows a
kind of synaptic plasticity: A signal transmission at a
synapse results in enhancement of this synapse and
depression of the other unstimulated synapses. To what
extent the synapse is enhanced gradually depends upon
the signal intensity, and repeated stimulations result in
cumulative enhancement. The same results were ob-
tained for N >2 (data not shown). Thus, the reaction-
diffusion system in our model can encode and store the
history of signal transmissions in a graded and cumula-
tive manner.

IV. SUMMARY AND DISCUSSION

In our model, synaptic plasticity is realized as gradual
and cumulative storage of the history of signal transmis-
sions. This graduality results from signal-induced break-
ing of the conservations of Q;’s. It should be noticed that
the appearance of these conservative quantities is due to
the interaction between synapses mediated by diffusional
transportations of the enzymes.

In addition, it is also noticeable that, when p >0 and
v> 1, the system functions as an on-off switch [Figs. 2(b)
and 2(c)]. This is a consequence of our extension of the
original Lisman scheme [3]. However, the switch in our
extended scheme can perform much more complicated
tasks than the simple binary switch by Lisman: It can
remember the amplitude of the initial values of x;’s and
their order.

In the parameter space, let V'Y be the subspace
defined by >0 and v>1. For given a, B, and v, ym
expands as N becomes larger. This indicates that the sys-
tem functions as a switch under a wide range of the pa-
rameter values for large N. The original Lisman model
was associated with a problem that the parameter range
under which the system functions as a switch, given by
setting N =1 in >0 and v> 1, is relatively narrow (see
discussions in [2] and [6]). This difficulty, however, has
thus been improved in our extended scheme.

In the present study, we have a relation
SN x/*¥=5") [see (3.7)] at the chemical equilibrium;
that is, the total of the synaptic weights does not change
even though each of them can be gradually altered. This
resembles the synaptic-weight-normalization procedure
employed for the modeling of self-organization of orien-
tation selective cells in the visual cortex [8].
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